Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

catena-Poly[[copper(II)- μ-2-[bis(2-pyridylmethyl)amino]butyrato$\left.\kappa^{4} N, N^{\prime}, N^{\prime \prime}, O: \kappa O^{\prime}\right]$ perchlorate]

Ki-Young Choi, ${ }^{\text {a* }}$ Seung-Chul Choi, ${ }^{\text {a }}$ Jaejung Ko, ${ }^{\text {b }}$ Sang Ook Kang ${ }^{\text {b }}$ and Won-Sik Han ${ }^{\text {b }}$

${ }^{\text {a D Department of Chemistry Education, Kongju National University, Kongju 314-701, }}$ Republic of Korea, and ${ }^{\mathbf{b}}$ Department of Materials Chemistry, Korea University, 208 Seochang, Chochiwon, Chungnam 339-700, Republic of Korea
Correspondence e-mail: kychoi@kongju.ac.kr
Received 4 September 2006
Accepted 21 November 2006
Online 10 February 2007

The copper(II) ion in the syn-anti carboxylate-bridged onedimensional zigzag chain title complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right]\right.$ $\left.\mathrm{ClO}_{4}\right\}_{n}$, exhibits a distorted trigonal-bipyramidal environment. Two N atoms and one carboxylate O atom of the ligand form the basal plane, while the axial positions are filled by an N atom of the ligand and one O atom belonging to the carboxylate group of an adjacent molecule. The crystal packing is enhanced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (perchlorate) hydrogen bonds.

Comment

The inclusion of a carboxylate group in Schiff base polydentate ligands gives a wide variety of polynuclear complexes ranging from discrete entities to multidimensional chain complexes. It has been widely observed that such compounds can be influenced by the metal ion and the possible counterion effects (Choi, Jeon, Lee et al., 2004; Colacio et al., 1992; Doedens, 1976; Tanase et al., 2005). For example, the selfassembly of copper(II) perchlorate with 2-[bis(2-pyridylmethyl)amino]ethanoic acid (Hpmea) leads to the carbox-ylate-bridged one-dimensional chain complex $\{[\mathrm{Cu}(\mu-$ pmea $)]$ $\left.\mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, hereafter denoted (II), in which each copper(II) ion has a distorted square-pyramidal geometry with an $\mathrm{N}_{3} \mathrm{O}$ basal plane and a carboxylate O atom in the axial position (Choi, Jeon, Lee et al., 2004). However, 4-[bis(2-pyridylmethyl)amino]butyric acid (Hpmba) reacts with CuCl_{2} to give the mononuclear compound $\left[\mathrm{Cu}(\mathrm{Hpmba}) \mathrm{Cl}_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, which exhibits a distorted square-pyramidal environment with an $\mathrm{N}_{3} \mathrm{Cl}$ basal plane and a Cl atom in the axial position (Choi, Jeon, Ryu et al., 2004). To investigate different molecular topologies, we have prepared and present the structure of the one-dimensional chain copper(II) title complex $\{[\mathrm{Cu}(\mu-$ paba) $\left.] \mathrm{ClO}_{4}\right\}_{n} \quad\{\mathrm{Hpaba}$ is 2-[bis(2-pyridylmethyl)amino]butyric acid\}, (I).

Because the Hpaba ligand does not saturate the coordination position on the copper(II) ion, a self-assembly reaction

(I)
may occur through the deprotonated carboxylate group, leading to a carboxylate-bridged one-dimensional chain (Figs. 1 and 2) with an intramolecular $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 5.241 (1) \AA (Table 1). Each copper(II) ion involves a $\mathrm{CuN}_{3} \mathrm{O}_{2}$ chromophore. The $\mathrm{Cu}^{\text {II }}$ coordination geometry is distorted trigonal-bipyramidal with $\tau=0.64$, where the structure index τ is defined as $(\beta-\alpha) / 60(\beta$ and α are the largest coordination angles); τ has values of 1 and 0 for trigonal-bipyramidal $\left(D_{3 h}\right)$ and square-pyramidal ($C_{4 v}$) geometries, respectively (Addison et al., 1984). The three atoms in the trigonal plane are N1, N3 and O 1 of the paba ligand, while the axial positions are filled by atom N 2 and atom O 2 of a symmetry-related carboxylate group. The average $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ distances are 2.025 (1) and 2.022 (1) \AA, respectively, which are comparable to those found in (II) $[2.013$ (5) and 2.097 (7) $\AA],\{[\mathrm{Cu}(\mu$-pmpa $)]-$ $\left.\mathrm{ClO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}\{\mathrm{Hpmpa}$ is 3-[bis(2-pyridylmethyl)amino]propionic acid; 1.995 (3) and 2.168 (3) Å; Choi, Jeon, Lee et al., $2004\}$ and $\left\{\left[\mathrm{Cu}(\mathrm{dpa})\left(\mathrm{CH}_{3} \mathrm{COO}\right)\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{THF}\right\}_{n}$ [dpa is N, N -bis(pyridine-2-ylmethyl)amine and THF is tetrahydrofuran;

Figure 1
The asymmetric unit of (I), including two polymeric linking atoms belonging to two different neighboring units. Displacement ellipsoids are drawn at the 20% probability level and H atoms have been omitted for clarity. All hydrogen-bond contacts are shown as dashed lines. [Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (iv) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (v) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (vi) $x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.]
1.990 (2) and 2.169 (2) \AA; Tanase et al., 2005], hereafter denoted (III). The different molecular topology of (I) compared with syn-anti one-dimensional chain complex (II) ($\tau=0.16$) may be attributed to steric hindrance through the substitution of the ethyl group at the 2-carbon position of the Hpmea ligand.

The Cu atom is displaced 0.270 (1) \AA from the least-squares plane defined by the $\mathrm{N}_{2} \mathrm{O}$ basal plane, towards carboxylate atom O 2 . The $\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$ and $\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$ bite angles of the five-membered chelate rings (Table 1) are similar to those expected for $\left\{\left[\mathrm{Cu}(\mu \text {-papa })\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{ClO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ [Hpapa is 3-(2-pyridylmethylamino)propionic acid; 81.5 (1) ${ }^{\circ}$; Colacio et al., 2000], $\left\{\left[\mathrm{Cu}\left(\mu \text {-pmoa) }\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{ClO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}[\mathrm{Hpmoa}\right.$ is 3-(2pyridylmethylamino)butyric acid; 81.7 (1) ${ }^{\circ}$; Colacio et al., 2000) and (III) [83.00 (14) and $\left.82.20(14)^{\circ}\right]$. The dihedral angle between the plane of the carboxylate group and the $\mathrm{CuN}_{2} \mathrm{O}$ plane is $87.2(2)^{\circ}$. The axial $\mathrm{Cu} 1-\mathrm{N} 2$ and $\mathrm{Cu} 1-\mathrm{O} 2$ linkages are not perfectly perpendicular to the $\mathrm{CuN}_{2} \mathrm{O}$ plane, and the $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N}, \mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1, \mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N}$ and $\mathrm{O} 2-\mathrm{Cu} 1-$ O1 angles range from 80.7 (1) to 101.6 (1) ${ }^{\circ}$. The average Cu N (secondary amine, basal plane) distance of 2.018 (1) \AA is slightly shorter than that of $\mathrm{Cu} 1-\mathrm{N} 2$ (tertiary amine, axial) $[2.039(2) \AA]$. The average $\mathrm{N} 2-\mathrm{C}$ [1.492 (2) \AA] distance involving the tertiary amine is slightly longer than the average $\mathrm{N} 1-\mathrm{C}[1.339(3) \AA$ A $]$ and $\mathrm{N} 3-\mathrm{C}$ [1.343 (2) \AA] distances involving the secondary amines. This may be due to the $s p^{3}$ hybridization of the coordinated tertiary N atom. The IR spectrum of the complex shows the $v_{\text {as }}(\mathrm{COO})$ stretching frequency at $1608 \mathrm{~cm}^{-1}$ and $\nu_{\text {sym }}(\mathrm{COO})$ at $1421 \mathrm{~cm}^{-1}$. The difference, $\Delta v=187 \mathrm{~cm}^{-1}$, is characteristic of the syn-anti coordination mode of the bridging carboxylate group (Colacio et al., 2000).

Figure 2
Part of the cell contents, showing a representative infinite carboxylatebridged molecular chain parallel to the b axis. The large black spheres denote Cu atoms. Only the $\mathrm{C} 12 \cdots \mathrm{O} 6$ hydrogen bonds are shown for clarity. The symmetry codes are as in Fig. 1 [additional symmetry code: (vii) $x, y-1, z]$.

As illustrated in Fig. 1, the carboxylate polymer linking atoms O 2 and C 14 are generated by means of the 2_{1} screw axes at $x=z=\frac{1}{4}$ parallel to the b axis, thus forming an infinite onedimensional zigzag chain, as shown in Fig. 2. The perchlorate anion has typical geometry [$\mathrm{Cl}-\mathrm{O}$ distance range 1.378 (3)1.432 (3) \AA, mean $1.405(2) \AA ; \mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angle range $105.0(2)-112.9(2)^{\circ}$, mean 109.4 (1) ${ }^{\circ}$], similar to the perchlorate geometry reported by Hemmings et al.(1990). As shown in Fig. 1 and detailed in Table 2, atoms C6 and C7 in the cation are hydrogen bonded to atoms $\mathrm{O}^{1}{ }^{\mathrm{i}}$ and $\mathrm{O} 3^{\text {ii }}$, respectively, of the perchlorate anions; pyridine atom C12 is also hydrogen bonded to perchlorate atom O6, so the latter atom is bifurcated. Additionally, atom C 10 in the pyridine ring is hydrogen bonded to a carboxylate atom ($\mathrm{O} 1^{\text {iii }}$) of the polymer. The weak $\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{O} 2^{\mathrm{i}}$ bond is noted for completeness. This intermolecular hydrogen-bond network further stabilizes the crystal structure of (I).

Experimental

An aqueous solution $(20 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(185 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 2-[bis(2-pyridylmethyl)amino]butyric acid (Hpaba; 129 mg , 0.5 mmol) was heated under reflux for 1 h and then cooled to room temperature. The solution was filtered and the filtrate left at room temperature until purple crystals formed. The product was filtered off and recrystallized from a hot water-methanol solution (1:1, 10 ml). Analysis found: C 42.85, H 4.14, N 9.46; calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cl}$ $\mathrm{CuN}_{3} \mathrm{O}_{6}: \mathrm{C} 42.96$, H 4.06, N 9.39\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right] \mathrm{ClO}_{4}$	$Z=4$
$M_{r}=447.32$	$D_{x}=1.603 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=14.0597(11) \AA$	$\mu=1.36 \mathrm{~mm}^{-1}$
$b=9.4711(7) \AA$	$T=293(2) \mathrm{K}$
$c=14.5223(12) \AA$	Rectangular rod, purple
$\beta=106.626(1)^{\circ} \AA$	$0.41 \times 0.23 \times 0.16 \mathrm{~mm}$
$V=1853.0(3) \AA^{3}$	
Data collection	
Bruker SMART 1000 CCD	18596 measured reflections
\quad diffractometer	4627 independent reflections
φ and ω scans	3844 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.022$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$\theta_{\text {max }}=28.4^{\circ}$
$\quad T_{\text {min }}=0.643, T_{\text {max }}=0.808$	

$\left.{ }^{2}\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right] \mathrm{ClO}_{4}$
Monoclinic, $P 2_{1} / n$
$a=14.0597$ (11) Å
$b=9.4711$ (7) \AA
$c=14.5223$ (12) \AA
$\beta=106.626(1)^{\circ}$ 。

Data collection

Bruker SMART 1000 CCD
diffractometer
φ and ω scans
(intion
$T_{\min }=0.643, T_{\max }=0.808$
$Z=4$
$D_{x}=1.603 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.36 \mathrm{~mm}$
Rectangular rod, purple
$0.41 \times 0.23 \times 0.16 \mathrm{~mm}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{Cu}^{\mathrm{i}}$	$5.241(1)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.479(3)$
$\mathrm{Cu}-\mathrm{O}^{\mathrm{i}}$	$1.9234(17)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.491(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.012(2)$	$\mathrm{N} 2-\mathrm{C} 13$	$1.507(3)$
$\mathrm{Cu}-\mathrm{N} 3$	$2.023(2)$	$\mathrm{N} 3-\mathrm{C} 12$	$1.341(3)$
$\mathrm{Cu}-\mathrm{N} 2$	$2.039(2)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.344(3)$
$\mathrm{Cu}-\mathrm{O} 1$	$2.1207(16)$	$\mathrm{O} 1-\mathrm{C} 14$	$1.238(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.336(3)$	$\mathrm{O} 2-\mathrm{C} 14$	$1.264(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.342(4)$		
			$88.41(7)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 1$	$101.56(9)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 1$	$117.75(8)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 3$	$100.73(9)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 1$	$106.02(8)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	$130.90(9)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 1$	$80.71(7)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 2$	$169.12(7)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{O} 1$	$124.8(2)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$83.71(9)$	$\mathrm{O} 1-\mathrm{C} 14-\mathrm{O} 2^{\mathrm{i}}$	
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 2$	$82.40(9)$		
Symmetry code: $(\mathrm{i})-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.			

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0566 P)^{2}\right. \\
& +1.6027 P]
\end{aligned}
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.110$
$S=1.02$
$(\Delta / \sigma)_{\text {max }}=0.001$
4627 reflections
$\Delta \rho_{\text {max }}=0.98 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$

H -atom parameters constrained
Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6A \cdots O6 ${ }^{\text {ii }}$	0.97	2.44	3.401 (5)	173
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 3^{\text {iii }}$	0.97	2.46	3.258 (4)	140
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\text {iv }}$	0.93	2.50	3.323 (4)	148
C12-H12 . ${ }^{\text {O } 6}$	0.93	2.34	3.132 (4)	143
C16-H16B \cdots O2	0.96	2.41	3.021 (4)	122

All H atoms were positioned geometrically and constrained to ride on their carrier atoms, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.5 U_{\text {eq }}(\mathrm{C} 16)$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the other H atoms. The highest peak and deepest hole in the final difference density map are 1.07 and $0.35 \AA$, respectively, from atom C15.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to
refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA3027). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (1999). SMART (Version 5.0) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Choi, K.-Y., Jeon, Y.-M., Lee, K.-C., Choi, S.-N., Kim, M.-W., Lim, H.-H. \& Kim, M.-J. (2004). Transition Met. Chem. 29, 405-410.
Choi, K.-Y., Jeon, Y.-M., Ryu, H., Oh, J.-J., Lim, H.-H. \& Kim, M.-W. (2004). Polyhedron, 23, 903-911.
Colacio, E., Dominguez-Vera, J.-M., Cotes, J.-P., Kivekas, R., Laurent, J.-P., Ruiz, J. \& Sundberg, M. (1992). Inorg. Chem. 31, 774-778.
Colacio, E., Ghazi, M., Kivekas, R. \& Moreno, J. M. (2000). Inorg. Chem. 39, 2882-2887.
Doedens, R. J. (1976). Prog. Inorg. Chem. 21, 209-231.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hemmings, A. M., Lisgarten, J. N., Palmer, R. A. \& Gazi, D. M. (1990). Acta Cryst. C46, 205-207.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tanase, S., van Albada, G. A., de Gelder, R., Bouwman, E. \& Reedijk, J. (2005). Polyhedron, 24, 979-983.

